Vertical junction silicon microdisk modulators and switches.
نویسندگان
چکیده
Vertical junction resonant microdisk modulators and switches have been demonstrated with exceptionally low power consumption, low-voltage operation, high-speed, and compact size. This paper reviews the progress of vertical junction microdisk modulators, provides detailed design data, and compares vertical junction performance to lateral junction performance. The use of a vertical junction maximizes the overlap of the depletion region with the optical mode thereby minimizing both the drive voltage and power consumption of a depletion-mode modulator. Further, the vertical junction enables contact to be made from the interior of the resonator and therein a hard outer wall to be formed that minimizes radiation in small diameter resonators, further reducing the capacitance and drive power of the modulator. Initial simple vertical junction modulators using depletion-mode operation demonstrated the first sub-100 fJ/bit silicon modulators. With more intricate doping schemes and through the use of AC-coupled drive signals, 3.5 μm diameter vertical junction microdisk modulators have recently achieved a communications efficiency of 3 fJ/bit, making these modulators the smallest and lowest power modulators demonstrated to date, in any material system. Additionally, the demonstration was performed at 12.5 Gb/s, required a peak-to-peak signal level of only 1 V, and achieved bit-error-rates below 10(-12) without requiring signal pre-emphasis. As an additional benefit to the use of interior contacts, higher-order active filters can be constructed from multiple vertical-junction modulators without interference of the electrodes. Doing so, we demonstrated second-order active high-speed bandpass switches with ~2.5 ns switching speeds, and power penalties of only 0.4 dB. Through the use of vertical junctions in resonant modulators, we have achieved the lowest power consumption, lowest voltage, and smallest silicon modulators demonstrated to date.
منابع مشابه
Maximally Confined Silicon Microring and Microdisk Modulators and Switches
Silicon resonant microdisk and microring modulators and switches based on free-carrier depletion and injection were designed and fabricated with the aim of minimizing device radius to theoretical bend-radiation imposed limits. Minimizing device area serves to simultaneously maximize resonator free-spectral-range, minimize switching energy, and maximize component density, all critical parameters...
متن کاملSilicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities
In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas — microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on ...
متن کاملUltrasensitive Silicon Photonic-crystal Nanobeam Electro-optical Modulator (preprint)
Design and simulation results are presented for an ultralow switching energy, resonator based silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length ~λ is used to alter the index of refraction through fast carri...
متن کاملResonant waveguide device with vertical gratings.
Transmission resonant filters in a waveguide with vertical gratings have been realized in silicon on insulator wafers. Experimental studies of fabricated devices show a broad stopband of approximately 19 nm in the center of which exists a narrow transmission band of approximately 0.5 nm with a quality factor of approximately 3000. These resonant cavities are useful for laser cavities, switches,...
متن کاملHeterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs.
A new approach for an electrically driven microlaser based on a microdisk transferred onto Silicon is proposed. The structure is based on a quaternary InGaAsP p-i-n junction including three InAsP quantum wells, on a thin membrane transferred onto silicon by molecular bonding. A p++/n++ tunnel junction is used as the p-type contact. The technological procedure is described and first experimental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 22 شماره
صفحات -
تاریخ انتشار 2011